ANALISA DATASET SOFTWARE DEFINED NETWORK INTRUSION MENGGUNAKAN ALGORITMA DEEP LEARNING H2O
نویسندگان
چکیده
Software-defined networking Intrusion (SDNI) baru-baru ini menjadi salah satu solusi paling menjanjikan untuk Internet masa depan. Dengan sentralisasi logis dari pengontrol dan tampilan jaringan global, SDN menawarkan peluang meningkatkan keamanan jaringan. Pada penelitian sebelumnya oleh Omar Jamal Ibrahim, Wesam S. Bhaya menjelaskan tentang dataset intrusion bahwa dengan menggunakan algoritma Support Vector Machine (SVM) diperoleh nilai akurasi sebesar 97.77%, sehingga menurut peneliti masih bisa di kaji lagi algortima yang berbeda. Sebagai proses pencarian informasi sekumpulan data akan dijadikan pengetahuan baru dapat dimanfaatkan maka itu mining juga seringkali dikenal sebutan Knowledge Discovery in Database (KDD). Metode klasifikasi digunakan yaitu Deep Learning H2O suatu metode multilayer sebut neural networks. Tujuan mencoba mengambil kesimpulan berdasarkan struktur logika berikan secara berkelanjutan. Peneliti software aplikasi Rapid Miner sebagai bantuan dalam menganalisis dataset. Dari hasil terbukti lebih baik. Hal dibuktikan evaluasi mampu menganalisa recall 100.00% tingkat 99.66% model baik saat diterapkan pada
منابع مشابه
A Review of Intrusion Detection Defense Solutions Based on Software Defined Network
Most networks without fixed infrastructure are based on cloud computing face various challenges. In recent years, different methods have been used to distribute software defined network to address these challenges. This technology, while having many capabilities, faces some vulnerabilities in the face of some common threats and destructive factors such as distributed Denial of Service. A review...
متن کاملA Machine Learning Based Intrusion Detection System for Software Defined
As an inevitable trend of future 5G networks, Software Defined architecture has many advantages in providing centralized control and flexible resource management. But it is also confronted with various security challenges and potential threats with emerging services and technologies. As the focus of network security, Intrusion Detection Systems (IDS) are usually deployed separately without coll...
متن کاملA Machine Learning Based Intrusion Detection System for Software Defined 5G Network
As an inevitable trend of future 5G networks, Software Defined architecture has many advantages in providing centralized control and flexible resource management. But it is also confronted with various security challenges and potential threats with emerging services and technologies. As the focus of network security, Intrusion Detection Systems (IDS) are usually deployed separately without coll...
متن کاملController Placement in Software Defined Network using Iterated Local Search
Software defined network is a new computer network architecture who separates controller and data layer in network devices such as switches and routers. By the emerge of software defined networks, a class of location problems, called controller placement problem, has attracted much more research attention. The task in the problem is to simultaneously find optimal number and location of controll...
متن کاملSelf Learning Optimization of Software Defined Network Capstone Final Project Report on Self Learning Optimization of Software Defined Network
Managing QoS in a telecommunications network is a complex process. Effective network design and sizing in conjunction with load balancing, access control and traffic prioritization need to be orchestrated to optimize CAPEX investment, maximize network utilization and ensure that performance metrics and SLAs are met. This work shows how machine learning can be employed in managing an SDN and add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JATI (Jurnal Mahasiswa Teknik Informatika)
سال: 2022
ISSN: ['2598-828X']
DOI: https://doi.org/10.36040/jati.v6i2.5724